博客
关于我
focal loss
阅读量:742 次
发布时间:2019-03-21

本文共 666 字,大约阅读时间需要 2 分钟。

# 焦散损失计算# 定义焦散系数focal_alpha = 0.25gamma = 2# 创建焦散因子alpha_factor = K.ones_like(object_mask) * focal_alpha# 根据mask值调整alpha因子alpha_factor = tf.where(K.equal(object_mask, 1), alpha_factor, 1 - alpha_factor)# 定义焦散权重focal_weight = tf.where(K.equal(object_mask, 1),                         1 - raw_pred[..., 4:5],                         raw_pred[..., 4:5])# 计算最终的焦散权重focal_weight = alpha_factor * (focal_weight ** gamma)# 计算置信度损失confidence_loss = focal_weight * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)

以上代码段实现了焦散损失的计算逻辑,其主要用于深度学习模型中,尤其是在分类任务中以提高主分类的鲁棒性。代码中使用了TensorFlow/Keras中的backend和操作如tf.where来实现对mask和预测结果的条件判断,从而动态地计算出各个样本的焦散权重和置信度损失。

转载地址:http://piggz.baihongyu.com/

你可能感兴趣的文章
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty在IDEA中搭建HelloWorld服务端并对Netty执行流程与重要组件进行介绍
查看>>
Netty基础—1.网络编程基础一
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—2.网络编程基础三
查看>>
Netty基础—2.网络编程基础四
查看>>
Netty基础—3.基础网络协议一
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—4.NIO的使用简介一
查看>>
Netty基础—4.NIO的使用简介二
查看>>
Netty基础—5.Netty的使用简介
查看>>
Netty基础—6.Netty实现RPC服务一
查看>>
Netty基础—6.Netty实现RPC服务三
查看>>
Netty基础—6.Netty实现RPC服务二
查看>>
Netty基础—7.Netty实现消息推送服务一
查看>>
Netty基础—7.Netty实现消息推送服务二
查看>>
Netty基础—8.Netty实现私有协议栈一
查看>>
Netty基础—8.Netty实现私有协议栈二
查看>>
Netty多线程 和 Redis6 多线程对比
查看>>