博客
关于我
focal loss
阅读量:742 次
发布时间:2019-03-21

本文共 666 字,大约阅读时间需要 2 分钟。

# 焦散损失计算# 定义焦散系数focal_alpha = 0.25gamma = 2# 创建焦散因子alpha_factor = K.ones_like(object_mask) * focal_alpha# 根据mask值调整alpha因子alpha_factor = tf.where(K.equal(object_mask, 1), alpha_factor, 1 - alpha_factor)# 定义焦散权重focal_weight = tf.where(K.equal(object_mask, 1),                         1 - raw_pred[..., 4:5],                         raw_pred[..., 4:5])# 计算最终的焦散权重focal_weight = alpha_factor * (focal_weight ** gamma)# 计算置信度损失confidence_loss = focal_weight * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)

以上代码段实现了焦散损失的计算逻辑,其主要用于深度学习模型中,尤其是在分类任务中以提高主分类的鲁棒性。代码中使用了TensorFlow/Keras中的backend和操作如tf.where来实现对mask和预测结果的条件判断,从而动态地计算出各个样本的焦散权重和置信度损失。

转载地址:http://piggz.baihongyu.com/

你可能感兴趣的文章
Objective-C实现largestPrime最大素数的算法 (附完整源码)
查看>>
Objective-C实现lazy segment tree惰性段树算法(附完整源码)
查看>>
Objective-C实现LBP特征提取(附完整源码)
查看>>
Objective-C实现LDPC码(附完整源码)
查看>>
Objective-C实现least common multiple最小公倍数算法(附完整源码)
查看>>
Objective-C实现Lempel-Ziv压缩算法(附完整源码)
查看>>
Objective-C实现Length conversion长度转换算法(附完整源码)
查看>>
Objective-C实现Levenshtein 距离算法(附完整源码)
查看>>
Objective-C实现levenshteinDistance字符串编辑距离算法(附完整源码)
查看>>
Objective-C实现lfu cache缓存算法(附完整源码)
查看>>
Objective-C实现LFU缓存算法(附完整源码)
查看>>
Objective-C实现linear algebra线性代数算法(附完整源码)
查看>>
Objective-C实现linear congruential generator线性同余发生器算法(附完整源码)
查看>>
Objective-C实现linear discriminant analysis线性判别分析算法(附完整源码)
查看>>
Objective-C实现linear regression线性回归算法(附完整源码)
查看>>
Objective-C实现linear search线性搜索算法(附完整源码)
查看>>
Objective-C实现Linear search线性搜索算法(附完整源码)
查看>>
Objective-C实现LinearSieve线性素数筛选算法 (附完整源码)
查看>>
Objective-C实现LinkedListNode链表节点类算法(附完整源码)
查看>>
Objective-C实现LinkedList链表算法(附完整源码)
查看>>