博客
关于我
focal loss
阅读量:742 次
发布时间:2019-03-21

本文共 666 字,大约阅读时间需要 2 分钟。

# 焦散损失计算# 定义焦散系数focal_alpha = 0.25gamma = 2# 创建焦散因子alpha_factor = K.ones_like(object_mask) * focal_alpha# 根据mask值调整alpha因子alpha_factor = tf.where(K.equal(object_mask, 1), alpha_factor, 1 - alpha_factor)# 定义焦散权重focal_weight = tf.where(K.equal(object_mask, 1),                         1 - raw_pred[..., 4:5],                         raw_pred[..., 4:5])# 计算最终的焦散权重focal_weight = alpha_factor * (focal_weight ** gamma)# 计算置信度损失confidence_loss = focal_weight * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)

以上代码段实现了焦散损失的计算逻辑,其主要用于深度学习模型中,尤其是在分类任务中以提高主分类的鲁棒性。代码中使用了TensorFlow/Keras中的backend和操作如tf.where来实现对mask和预测结果的条件判断,从而动态地计算出各个样本的焦散权重和置信度损失。

转载地址:http://piggz.baihongyu.com/

你可能感兴趣的文章
No qualifying bean of type XXX found for dependency XXX.
查看>>
No resource identifier found for attribute 'srcCompat' in package的解决办法
查看>>
No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
查看>>
NO.23 ZenTaoPHP目录结构
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
查看>>
Node-RED中实现HTML表单提交和获取提交的内容
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
node.js 怎么新建一个站点端口
查看>>
Node.js 文件系统的各种用法和常见场景
查看>>
node.js 配置首页打开页面
查看>>
node.js+react写的一个登录注册 demo测试
查看>>
Node.js中环境变量process.env详解
查看>>
Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
查看>>
Node.js的循环与异步问题
查看>>
nodejs libararies
查看>>
nodejs npm常用命令
查看>>