博客
关于我
focal loss
阅读量:742 次
发布时间:2019-03-21

本文共 666 字,大约阅读时间需要 2 分钟。

# 焦散损失计算# 定义焦散系数focal_alpha = 0.25gamma = 2# 创建焦散因子alpha_factor = K.ones_like(object_mask) * focal_alpha# 根据mask值调整alpha因子alpha_factor = tf.where(K.equal(object_mask, 1), alpha_factor, 1 - alpha_factor)# 定义焦散权重focal_weight = tf.where(K.equal(object_mask, 1),                         1 - raw_pred[..., 4:5],                         raw_pred[..., 4:5])# 计算最终的焦散权重focal_weight = alpha_factor * (focal_weight ** gamma)# 计算置信度损失confidence_loss = focal_weight * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)

以上代码段实现了焦散损失的计算逻辑,其主要用于深度学习模型中,尤其是在分类任务中以提高主分类的鲁棒性。代码中使用了TensorFlow/Keras中的backend和操作如tf.where来实现对mask和预测结果的条件判断,从而动态地计算出各个样本的焦散权重和置信度损失。

转载地址:http://piggz.baihongyu.com/

你可能感兴趣的文章
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>