博客
关于我
focal loss
阅读量:742 次
发布时间:2019-03-21

本文共 666 字,大约阅读时间需要 2 分钟。

# 焦散损失计算# 定义焦散系数focal_alpha = 0.25gamma = 2# 创建焦散因子alpha_factor = K.ones_like(object_mask) * focal_alpha# 根据mask值调整alpha因子alpha_factor = tf.where(K.equal(object_mask, 1), alpha_factor, 1 - alpha_factor)# 定义焦散权重focal_weight = tf.where(K.equal(object_mask, 1),                         1 - raw_pred[..., 4:5],                         raw_pred[..., 4:5])# 计算最终的焦散权重focal_weight = alpha_factor * (focal_weight ** gamma)# 计算置信度损失confidence_loss = focal_weight * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True)

以上代码段实现了焦散损失的计算逻辑,其主要用于深度学习模型中,尤其是在分类任务中以提高主分类的鲁棒性。代码中使用了TensorFlow/Keras中的backend和操作如tf.where来实现对mask和预测结果的条件判断,从而动态地计算出各个样本的焦散权重和置信度损失。

转载地址:http://piggz.baihongyu.com/

你可能感兴趣的文章
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Numpy闯关100题,我闯了95关,你呢?
查看>>
Nutch + solr 这个配合不错哦
查看>>
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>